Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry
نویسنده
چکیده
A simplified model of the gas-surface chemistry occurring during chemical-vapor deposition of diamond thin films is presented. The model results in simple scaling relations, useful for process scale-up and optimization, for growth rate and defect density in terms of the local chemical environment at the substrate. A simple two-parameter expression for growth rate is obtained, which with suitable parameter choices reproduces the results of more detailed mechanisms and experiment over two orders of magnitude in growth rate. The defect formation model suggests that the achievable growth rate at specified defect density scales approximately quadratically with the atomic hydrogen concentration at the substrate.
منابع مشابه
Scaling laws for diamond chemical-vapor deposition. IL Atomic hydrogen trans
Scaling relations are developed to allow estimation of the atomic hydrogen concentration at the substrate during diamond chemical-vapor deposition for both diffusion-dominated and convection-dominated reactors. In the convection-dominated case, it is shown that there exists an optimal Mach number which maximizes the H concentration delivered to the substrate. In addition, when homogeneous recom...
متن کاملEffect of Catalyst on the Growth of Diamond-like Carbon by HFCVD
Diamond like carbon (DLC) film was grown by hot filament chemical vapor deposition (HFCVD)technique. In the present work, we investigated the quality of the DLC films groew on the substratesthat were coated with various metal nanocatalysts (Au and Ni). A combination of CH4/Ar/H2 rendersthe growth of carbon nanostructures technique (diamond like carbon). The utilized samples werecharacterized by...
متن کاملAn Investigation on Two Types of Crystalline Micro-diamond Film Coated Tools Lapping with Sapphire Wafer
Two types of micron-diamond films were prepared on YG6 substrate by hot filament chemical vapor deposition(HFCVD) method. Morphology and orientation of crystalline growth were evaluated by SEM and XRD. Diamond film coated tools and sapphire wafer’ surface before and after lapping experiment were contrasted. The results indicated that a significant change in Raman spectrum of two types of micro...
متن کاملCharacterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond
A numerical model was developed and used to study the near-surface gas-phase chemistry during atmospheric-pressure radiofrequency (RF) plasma diamond chemical vapor deposition (CVD). Model predictions of the mole fractions of CH4, 22 24 and 26 agree well with gas chromatograph measurements of those species over a broad range of operating conditions. The numerical model includes a two-dimensiona...
متن کاملAtomic carbon vapor as a diamond growth precursor in thermal plasmas
A detailed surface chemistry mechanism is proposed for chemical vapor deposition of diamond films, which extends the growth-by-methyl mechanism proposed by Harris to treat any CH, radical, m=O-3, as a growth monomer. Numerical computations were performed in which the mechanism was coupled to a model for the boundary layer above the substrate, for conditions typical of diamond deposition in an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999